Environmental Compatibility of Lightweight Aggregates from Mine Tailings and Industrial Byproducts
نویسندگان
چکیده
A lightweight aggregate was produced by sintering the mixture of gold mine tailings, red mud, and limestone at 1150 ◦C. The physical (i.e., skid resistance, abrasion resistance, and bond strength) and environmental (i.e., leachability) feasibility of this aggregate was assessed to consider its potential use as a construction material for bicycle lanes. The skid resistance (British pendulum number of 71) and bond strength (1.5 N·mm−2) of the aggregate were found to be appropriate for this use. However, the abrasion loss value of the aggregate was found to be 290 mg, which exceeds the limit of Korean Standard KS F 281 (200 mg). Heavy metals were found to not leach from the aggregate in various leaching tests. These include Korean (Korea Standard Method for Solid Waste), American (Toxic Characteristic Leaching Procedure (TCLP), Synthetic Precipitation Leaching Procedure (SPLP)), and European (BS EN 12457-1) leaching tests, despite the raw materials containing significant amounts of Pb, As, and F. However, leachate extracted from the aggregate exhibited an aquatic toxicity to Daphnia magna of 13.94 TU24hr and 14.25 TU48hr, most likely due to a high pH and Ca concentration originating from the free CaO present in the aggregate. The data suggests that the physical properties of the reconstructed aggregate are appropriate for use in bicycle lane construction, however the dissolution of Ca and the pH level of the leachate need to be controlled to protect aquatic ecosystems.
منابع مشابه
Stabilization/solidification of Iron Ore Mine Tailings Using Cement, Lime and Fly Ash
Current research emphasis is more on the utilization of materials that are considered as waste. Tailings and fly ash are major category of industrial wastes, whose disposal is problematic from environmental point of view. In this present research, Industrial byproducts, namely, lime (CaO) and class F type fly ash have been used as candidate materials along with the partial addition of ordinary ...
متن کاملApplication of a life cycle assessment to compare environmental performance in coal mine tailings management.
This study compares coal mine tailings management strategies using life cycle assessment (LCA) and land-use area metrics methods. Hybrid methods (the Australian indicator set and the ReCiPe method) were used to assess the environmental impacts of tailings management strategies. Several strategies were considered: belt filter press (OPT 1), tailings paste (OPT 2), thickened tailings (OPT 3), and...
متن کاملContamination by trace elements of agricultural soils around Sidi Bou Othmane in abandoned mine tailings in Marrakech, Morocco
This study was carried out for the purpose of investigating the issue of tailings dams as a potential source of contamination by trace elements in soils at the Sidi Bou Othmane mine in the Marrakech Region, Morocco. Soil samples taken from depths of up to 15 cm and within a radius of 50 m from the tailings dams, were analyzed for Cd, Cu, Pb and Zn using atomic absorption spectrometry. Average c...
متن کاملContamination by trace elements of agricultural soils around Sidi Bou Othmane in abandoned mine tailings in Marrakech, Morocco
This study was carried out for the purpose of investigating the issue of tailings dams as a potential source of contamination by trace elements in soils at the Sidi Bou Othmane mine in the Marrakech Region, Morocco. Soil samples taken from depths of up to 15 cm and within a radius of 50 m from the tailings dams, were analyzed for Cd, Cu, Pb and Zn using atomic absorption spectrometry. Average c...
متن کاملPhytostabilization of Mine Tailings in Arid and Semiarid Environments—An Emerging Remediation Technology
OBJECTIVE Unreclaimed mine tailings sites are a worldwide problem, with thousands of unvegetated, exposed tailings piles presenting a source of contamination for nearby communities. Tailings disposal sites in arid and semiarid environments are especially subject to eolian dispersion and water erosion. Phytostabilization, the use of plants for in situ stabilization of tailings and metal contamin...
متن کامل